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Peristaltically Induced Flow Due to a Surface Acoustic Wavy Moving Wall
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Peristaltic flow induced by a sinusoidal wave in a moving wall of a two-dimensional viscous
fluid for moderately large Reynolds number is investigated. The boundary layer theory has
been considered to be where its thickness is larger than the amplitude of the wavy wall.
Solutions are obtained in terms of a series expansion with respect to a small amplitude ratio
using a regular perturbation method. Velocity components, for both outer and inner flows
for various values of the Reynolds number and wall velocity are represented graphically. The
inner and outer velocity solutions are matched by a matching process. Certain interesting
results regarding the axial and the transverse velocity components are discussed. This prob-
lem is regarded as an interesting application to mechanical engineering, where the possibility
of fluid transportation without an external pressure is shown.
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I. INTRODUCTION

The study of the flow of fluids induced by the unsteady motion of a wall is of great
practical importance in the field of biomechanics. Much attention has been paid to the
propulsive mechanism of fish and bacteria in the field of biophysics. Gray [1] studied the
drag on a swimming dolphin and found that this drag is much less than that on a solid body
immersed in a fluid. Gray proposed a number of mechanisms which can reduce the drag,
such as the effect of body shape (laminar aerofoil theory), the effect of flexible skin, and
the unsteady motive effect. The latter one is related to the fluid mechanical developments
concerning the swimming of fish and has raised a question on how an unsteady movement
of a body immersed in a fluid induces a steady flow around it. The motive power of fish is
mainly due to the flapping of the tail and fin, a waving motion of a body has thus an effect
of thrusting the body, and this effect reduces the drag.

The flow of fluids induced by the sinusoidal wavy motion of a wall has been discussed
by Taylor [5], Burns and Parkes [2], Dhar and Nandha [6], and Tanaka [4]. Tanaka studied
the problem for both small and moderately large Reynolds numbers. While discussing
the problem for moderately large Reynolds numbers, he observed that if the thickness of
the boundary layer is larger than the wave amplitude, the technique employed for small
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Reynolds numbers can be applied to the case of moderately large Reynolds numbers as
well.

The phenomenon of peristaltic transport has been of increasing interest to investiga-
tors in several engineering disciplines. From the mechanical point of view, peristalsis offers
the opportunity of constructing pumps in which the transported medium does not come in
direct contact with any moving parts, such as valves, plungers, and rotors. The mechanism
of peristaltic transport has been also exploited for industrial applications such as sanitary
fluid transport, blood pumps, heart lung machines, and the transport of corrosive fluids,
where the contact of the fluid with the machinery parts is prohibited. To understand peri-
staltic action in various situations, several theoretical and experimental investigations have
been made. Important contributions to the topic on Newtonian and non-Newtonian fluids
include the studies of Fung and Yih [7], Yin and Fung [8], Takabatake and Ayukawa [9],
Bohme and Friedrich [10], Siddiqui and Schwarz [11], Hakeem et al. [12], Mekheimer [13],
Mekheimer and Abd elmaboud [14], Mekheimer et al. [15], Mekheimer et al. [16], and Abd
elmaboud [17].

In the present paper we have studied the two dimensional flow of an incompressible
fluid that is induced by a sinusoidal peristaltic wavy moving wall. Solutions are obtained in
terms of a series expansion with respect to the small amplitude ratio by a regular pertur-
bation method. The inner (boundary layer flow) and the outer (flow beyond the boundary
layer) solutions are matched by a matching process given by Kevorkian and Cole [3]. Graphs
of the velocity components, for both the outer and the inner flows, and for various values
of the Reynolds numbers and wall velocity are drawn.

II. EQUATIONS OF MOTION

We consider a two-dimensional flow of an incompressible viscous fluid due to an
infinite sinusoidal wavy wall moving with a constant velocity U and oscillating vertically
with a frequency c

2π , x being the coordinate in the downstream direction of the flow, and
y the coordinate perpendicular to it. The motion of the wall is described by

y = h(x, t) = a cos
2π

λ
(x− ct), (1)

where a is the amplitude of the wavy wall, λ is the wave length, and c is the wave speed.
The equations of conservation of momentum for the fluid are

∇ · q = 0,

ρ

(
∂q

∂t
+ (q · ∇)q

)
= −∇p+ µ∇2q, (2)
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where p is the fluid pressure, ρ is the number density, and µ is the coefficient of viscosity.
Here we assume that a

λ ≪ 1. The boundary conditions are

u =
(2πa)

1
2

λ
U , v =

∂h

∂t
at y = h(x, t),

|u| , |v| < ∞ as y → ∞.

(3)

We normalize all lengths by the characteristic length λ
2π , velocity components q by the

characteristic speed c, the fluid pressure p by ρc2, and the time by the characteristic time
λ

2πc . The above equations of motion of the fluid become

∂q

∂t
+ (q · ∇)q = −∇p+ 1

R
∇2q, (4)

where the Reynolds number R = λρc
2πµ , and the boundary conditions are

u = ε
1
2mU , v =

∂h

∂t
at y = h(x, t),

|u| , |v| < ∞ as y → ∞,
(5)

where h(x, t) = ε cos(x− t), m = ( 1λ)
1/2, and ε = 2πa

λ << 1.
By introducing the stream function ψ(x, y, t) for the fluid. The governing equation (4), and
the boundary conditions (5) are

∂

∂t
∇2ψ +

∂ψ

∂x
∇2∂ψ

∂y
− ∂ψ

∂y
∇2∂ψ

∂x
=

1

R
∇2(∇2ψ),

∂ψ

∂y
= ε

1
2mU , −∂ψ

∂x
=
∂h

∂t
at y = h(x, t),

|∂ψ
∂y

| , |∂ψ
∂x

| < ∞ as y → ∞.

(6)

III. SOLUTION OF THE PROBLEM

When Reynolds number becomes large, the boundary layer is formed. As we have
assumed that the thickness of the boundary layer is larger than the wave amplitude, follow-
ing Tanaka [4], a regular perturbation technique can be applied to the present problem. If
δ is the thickness of the boundary layer, the non-dimensional may be defined as y = y

δ and

ψ = ψ
δ . When the viscous term is supposed to be of the same order as the inertia terms,

we have that δ2R is O(1), as usual. The boundary conditions at y = h are expanded into
a Taylor series around h = 0 in terms of the inner variables ψ and y as

∂ψ

∂x
(0) +

h

δ

∂2ψ

∂x∂y
(0) +

1

2

h2

δ2
∂3ψ

∂x∂y2
(0) + · · · · · · · · · = −1

δ

∂h

∂t
,

∂ψ

∂y
(0) +

h

δ

∂2ψ

∂y2
(0) +

1

2

h2

δ2
∂3ψ

∂y3
(0) + · · · · · · · · · · · · · = ε

1
2mU.

(7)
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In order that the Taylor series converges, O(δ) must be larger than O(h), that is, O(ε) <

O(δ). Following Tanaka [4], we take δ = rε
1
2 , r being an arbitrary constant of O(1). The

outer flow (the flow beyond the boundary layer) is described by (6) in terms of the original
variables (ψ, x, y, t), while the inner flow (boundary layer flow) is described in terms of the

inner variables (ψ, x, y, t) on substituting R = (r2ε)−1 and δ = rε
1
2 . As ε ≪ 1, we can use

a perturbation method and assume that the (outer flow) and (inner flow) can be expanded

as a power series in ε
1
2 using

ψ =

∞∑
n=1

ε
n
2 ψn , ψ =

∞∑
n=1

ε
n
2 ψ

n
. (8)

Substituting (8) and using y = (yδ ), ψ = (ψδ ), R = (r2ε), δ = rε
1
2 in (6), and the boundary

conditions (7) and then equating the coefficients of like power of ε
1
2 . We obtain the

equations and the boundary conditions corresponding to the first order and second order
as follows.

First order ([O(ε
1
2 )])

OUTER

∂

∂t
∇2ψ1 = 0. (9)

INNER

∂4ψ1

∂y4
− ∂3ψ1

∂t∂y2
= 0, (10)

∂ψ1

∂y
(0) = mU ,

∂ψ1

∂x
(0) = −sin(x− t)

r
. (11)

Second order ([O(ε)])
OUTER

∂

∂t
∇2ψ2 =

∂ψ1

∂x
∇2∂ψ1

∂y
− ∂ψ1

∂y
∇2∂ψ1

∂x
. (12)

INNER

∂4ψ2

∂y4
− ∂3ψ2

∂t∂y2
=
∂ψ1

∂y

∂3ψ1

∂y2∂x
− ∂ψ1

∂x

∂3ψ1

∂y3
, (13)
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∂ψ2

∂y
(0) = −cos(x− t)

r

∂2ψ1

∂y2
(0),

∂ψ2

∂x
(0) = −cos(x− t)

r

∂2ψ1

∂x∂y
(0),

(14)

Third order ([O(ε
3
2 )])

OUTER

∂

∂t
∇2ψ3 = r2∇2∇2ψ1 −

∂ψ1

∂y
∇2∂ψ2

∂x
− ∂ψ2

∂y
∇2∂ψ1

∂x
+
∂ψ1

∂x
∇2∂ψ2

∂y
+
∂ψ2

∂x
∇2∂ψ1

∂y
, (15)

INNER

∂4ψ3

∂y4
− ∂3ψ3

∂t∂y2
=− 2r2

∂4ψ1

∂2x∂2y
+ r2

∂3ψ1

∂t∂x2

+
∂ψ1

∂y

∂3ψ2

∂y2∂x
+
∂ψ2

∂y

∂3ψ1

∂y2∂x
− ∂ψ1

∂x

∂3ψ2

∂y3
− ∂ψ2

∂x

∂3ψ1

∂y3
,

(16)

∂ψ3

∂y
(0) = −1

r
cos(x− t)

∂2ψ2

∂y2
(0)− 1

2r2
cos2(x− t)

∂3ψ1

∂y3
(0),

∂ψ3

∂x
(0) = −1

r
cos(x− t)

∂2ψ2

∂x∂y
(0)− 1

2r2
cos2(x− t)

∂3ψ1

∂x∂y2
(0).

(17)

Fourth order ([O(ε2)])
OUTER

∂

∂t
∇2ψ4 =r

2∇2∇2ψ2 −
∂ψ1

∂y
∇2∂ψ3

∂x
− ∂ψ2

∂y
∇2∂ψ2

∂x
− ∂ψ3

∂y
∇2∂ψ1

∂x

+
∂ψ1

∂x
∇2∂ψ3

∂y
+
∂ψ2

∂x
∇2∂ψ2

∂y
+
∂ψ3

∂x
∇2∂ψ1

∂y
,

(18)

INNER

∂4ψ4

∂y4
− ∂3ψ4

∂t∂y2
=− 2r2

∂4ψ2

∂2x∂2y
+ r2

∂3ψ2

∂t∂x2
+ r2

∂ψ1

∂y

∂3ψ1

∂x3
− r2

∂ψ1

∂x

∂3ψ1

∂x2∂y
+
∂ψ1

∂y

∂3ψ3

∂y2∂x

+
∂ψ2

∂y

∂3ψ2

∂y2∂x
+
∂ψ3

∂y

∂3ψ1

∂y2∂x
− ∂ψ1

∂x

∂3ψ3

∂y3
− ∂ψ2

∂x

∂3ψ2

∂y3
− ∂ψ3

∂x

∂3ψ1

∂y3
,

(19)
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∂ψ4

∂y
(0) = −1

r
cos(x− t)

∂3ψ3

∂y2
(0)− 1

2r2
cos2(x− t)

∂3ψ2

∂y3
(0)− 1

6r3
cos3(x− t)

∂4ψ1

∂y4
(0),

∂ψ4

∂x
(0) = −1

r
cos(x− t)

∂2ψ3

∂x∂y
(0)− 1

2r2
cos2(x− t)

∂3ψ2

∂x∂y2
(0)− 1

6r3
cos3(x− t)

∂4ψ1

∂y3∂x
(0).

(20)

A series of the inner solutions should satisfy the boundary conditions on the wall,
while the outer solutions are only restricted to be bounded as y increases, but is

| ∂ψn
∂x

| , | ∂ψn
∂y

| <∞ as y −→ ∞ for n = 1, 2, 3, . . . .

It is necessary to match the outer and the inner solutions. Following Cole [3], the matching
is carried out for both the x and y components of the velocity by the following principles:

lim
ε−→0

1

ε
N
2

[
N∑
n=1

ε
n
2
∂ψn
∂y

−
N∑
n=1

ε
n
2
∂ψn
∂y

]
= 0, (21)

lim
ε−→0

1

ε
N
2

[
N∑
n=1

ε
n
2
∂ψn
∂x

− rε
1
2

N∑
n=1

ε
n
2
∂ψn
∂x

]
= 0, (22)

where y is fixed up to the N -th order of magnitude. Let us find first order solutions in the
form:

ψ1(x, y, t) = F1(y)e
i(x−t) + F ∗

1 (y)e
−i(x−t) + F1s(y),

ψ1(x, y, t) = f1(y)e
i(x−t) + f∗1 e

−i(x−t) + f1s(y).
(23)

By substituting (23) in the first order differential equations (9) and (10) and the boundary
conditions (11), we obtain the following system of equations:

d4F1

dy4
− i

d2F1

dy2
= 0,

d4F1s

dy4
= 0,

d2f1
dy2

− f1 = 0,
d4F1s

dy4
= 0, (24)

and their solutions

F1 = A1e
−λy + λA1y −A1 +

1

2r
,

dF1s

dy
= B1y

2 +B2y +mU,

f1 = ae−y.

Following Tanaka [4]
df1s
dy

= C1,

(25)
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where λ =
√
−i and A, B, a are constants. Substituting (25) into (21), we have

lim
ε−→0

1

ε
1
2

[
ε

1
2
∂ψ1

∂y
− ε

1
2
∂ψ1

∂y

]
= lim

ε−→0

[
−ae−yei(x−t) + c.c.+

df1s
dy

− (−A1λe
−λy + λA1)−B1y

2 −B2y −mU

]
= 0.

Where c.c. stands for the corresponding complex conjugate. Taking account that y = rε
1
2 y,

expanding the exponential as

e−y = e−rε
1
2 y = 1− rε

1
2 y + r2εy2 + · · · ,

and noting that exp(−λy) = exp(−λy/rε
1
2 ) decays very rapidly as ε −→ 0 (which is called

transcendentally small (T.S.T) and is neglected in the matching process), we have

lim
ε−→0

[(−a− λA1) + c.c.+ C1 −B1y
2 +B2y −mU + T.S.T ] = 0.

When a similar process is carried out for (22), we get

lim
ε−→0

1

ε
1
2

[
ε

1
2
∂ψ1

∂x
− rε

1
2
∂ψ1

∂x

]
= lim

ε−→0

1

ε
1
2

[
ε

1
2 (ia)ei(x−t) + c.c.+ o(ε)

]
= 0,

so that matching condition is satisfied a = 0. Thus we have

A1 = B1 = B2 = 0, C1 = mU

and the first order solutions are obtained as

ψ1 = mUy,

ψ1 =
1

2r
ei(x−t) +

1

2r
e−i(x−t) +mUy.

(26)

Next we seek the solutions ψ2, ψ2 in the following form:

ψ2(x, y, t) = F2(y)e
2i(x−t) + F21(y)e

i(x−t) + c.c.+ F2s(y),

ψ2(x, y, t) = f1(y)e
2i(x−t) + f21e

i(x−t) + c.c.+ f2s(y).
(27)

Substituting (27) and (26) into (12)-(14) we get, after some calculations,

ψ2 =

(
− iλ

2
e−λy − y

2
+
iλ

2

)
ei(x−t) + c.c.,

ψ2 =
1

2
e−yei(x−t) + c.c. .

(28)

Let us now seek third order solutions in the form

ψ3(x, y, t) = F3(y)e
3i(x−t) + F32(y)e

2i(x−t) + F31(y)e
i(x−t) + c.c.+ F3s(y),

ψ3(x, y, t) = f3(y)e
3i(x−t) + f31e

2i(x−t) + f32(y)e
i(x−t) + c.c.+ f3s(y),

(29)
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where

F3 = 0,

F32 =
1

4r
− 1

4r
e−λy,

F31 =

(
−imUλ

4
− mUy

4
− ir

2

)
e−λy − iλry

2
+
ry2

4
+
ir

2
+
imUλ

4
,

f31 =
irλ

2
e−y,

dF3S

dy
=

λ

4r
e−λy +

λ∗

4r
e−λ

∗y.

(30)

We shall now seek the fourth order solutions in the following form:

ψ4(x, y, t) = F4(y)e
4i(x−t) + F43(y)e

3i(x−t) + F42(y)e
2i(x−t) + F41(y)e

i(x−t) + c.c.+ F3s(y),

ψ4(x, y, t) = f4(y)e
4i(x−t) + f43e

3i(x−t) + f42(y)e
2i(x−t) + f41(y)e

i(x−t) + c.c.+ f3s(y),

(31)

where

F4 = 0,

F43 =
−λ
16r2

e−λy,

F42 =
mU

4 (2
1
2 )r

e(2)
1
2 λy −

(
mU

4r
+
iλ

4
+
mUλy

8r
− y

4

)
e−λy − y

2
− mU

4 (2
1
2 )r

+
mU

4r
+
iλ

4
,

F41 =

(
− λ

8r2
+
r2λ

4
− 3iλm2U2r

16
− imUr

4

)
e−λy

+

(
ir2y

4
− 3m2U2y

16
− iλmUry

4
− λm2U2y2

16

)
e−λy

− λ∗

16r2
e−λ

∗y − r2y3

12
+
ir2λy2

4
− ir2y

2
− r2λ

4
+

3im2U2λ

16
+
imUr

4
,

dF4S

dy
=
1

4
e−(λ+λ∗)y −

(
− λmU

8r
+
imUy

8r
+
λy

4
+
i

4
+

1

4

)
e−λy

−

(
− λ∗mU

8r
− imUy

8r
+
λ∗y

4
− i

4
+

1

4

)
e−λ

∗y +
1

4
− mUλ

4r
− mUλ∗

4r
,

f42 =
1

4
e−2y,

f41 =
ir2

2
e−y.

(32)

In a similar way higher order solutions can also be found. But due to the complexities
involved in the problem, we are terminating our analysis with a fourth order solution.
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IV. RESULTS AND DISCUSSIONS

For the flow induced by a sinusoidal peristaltic wavy moving wall, we found that
the first order and the fourth order solutions consist of the steady part in addition to the
periodic one. But the contribution of the steady term in the fourth order solution is more
significant to the solution. So we shall take up for discussion the first and fourth order
solutions. The velocity components of the fluid for the outer and inner flows have been
plotted against y and y = y

δ , where δ the thickness of the boundary layer, respectively, for
various values of Reynolds number R, the velocity of the wall U and x− t at ε = 0.1.

The behavior of the axial velocity component of the inner flow Ui can be studied from
Figs. 1 and 2. We find that Ui for x − t = 0 is greater than that of x − t = π. The effect
of the increase in the Reynolds number is to increase the magnitude of the flow velocity
for x− t = 0 and x− t = π, while a reverse direction has occurred for x− t = π, also it is
interesting to note that Ui is oscillating between positive and negative values.

FIG. 1: Axial velocity component of the fluid Ui in the boundary layer for ε = 0.1, U = 0, and
m = 0.316.

From Fig. 2, we observe that the axial velocity component for the inner flow increases
as the velocity of the moving wall U increases for x − t = 0 and for x − t = π. However,
the effects of the moving wall makes the profiles of the fluid more separated.

Figures 3 and 4 describe the nature of the transverse velocity component of the fluid
Vi of the inner flow. We notice from Fig. 3 that an increase in the Reynolds number causes
the transverse velocity to be oscillatory, it increases its magnitude for both x − t = 0 and
x− t = π, but reverse its direction for x− t = π. For both cases x− t = 0 and x− t = π, we
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FIG. 2: Axial velocity component of the fluid Ui in the boundary layer for ε = 0.1, R = 500, and
m = 0.316.

found that Vi decreases as y increases and approach more or less the same constant value.
In Fig. 4, we observe that an increase of the velocity U of the moving wall will increase the
transverse velocity of the inner flow, and this kind of motion of the wall makes the profiles
of Vi much closer. Also, we see that for both cases of oscillations x− t = 0 and x− t = π,
the transverse velocity Vi always move forward in the positive x-direction as the velocity U
of the wall increases. Moreover, from these figures we see initially some oscilatory nature
in the fluid, but it becomes steady as y increases.

Figures 5 and 6 describe the behavior of the inner steady streaming parts of the fluid
against y for various values of U . Fig. 5 shows that the steady axial velocity component of
the inner flow Uis increases for small values of the velocity U of the moving wall, and the
profile of the velocity curves are more separated. It is also interesting to show that the inner
steady velocity flow approaches a constant value in the form of the damped oscillation with
respect to the distance from the wall, as shown in Figs. 5 and 6. However, we can say that
the progressive motion of the wall causes, at first, the periodic flow in the boundary layer
to have the same phase as that of the wall motion, then it causes flows of higher harmony
in the boundary layer, inducing the periodic flow in the outer layer successively. At first the
steady flow was induced only in the boundary layer, and after that there was an influence
upon the outer flow, giving rise to the steady flow in the whole region of the field.

Also, we noticed that at large value of the Reynolds number the steady flow velocity,
Uis/ε

2, approaches to 0.25 away from the wall, which coincides with results in [4].
In Fig. 7 we study the nature of the transverse velocity component of the outer flow

Vo. It is shown that an increase in the Reynolds number R, increases the magnitude of Vo
for both x − t = π and x − t = 0, and for both cases Vo becomes steady as y increases.
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FIG. 3: Transverse velocity component of the fluid Vi in the boundary layer for ε = 0.1, U = 0, and
m = 0.316.

FIG. 4: Transverse velocity component of the fluid Vi in the boundary layer for ε = 0.1, R = 500,
and m = 0.316.

Moreover, the transverse outer velocity becomes negative for x − t = 0, while it takes
positive values for x− t = π.

Fig. 8 elucidates the behavior of the axial velocity component Uo of the fluid of the
outer flow. We observe that as the values of U increase, the axial velocity of the outer flow
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FIG. 5: Induced steady axial velocity component of the fluid Uis in the boundary layer for ε = 0.1,
R = 500, and m = 0.316.

FIG. 6: Induced steady axial velocity component of the fluid Uis in the boundary layer for different
values of Reynolds number at ε = 0.1, U = 0, and m = 0.316.

increases. Also, we note that the axial velocity increases as y increases for x − t = 0, but
its behavior is reversed for x − t = π. It is interesting to notice the steadiness of Uo as y
increases for both x − t = 0 and x − t = π. Further, it approaches almost equal values.
Finally, the axial velocity Uo of the outer flow has approximately the same value at any
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FIG. 7: Outer flow transverse velocity component of the fluid Vo for different values of the Reynolds
number, taking ε = 0.1.

value of the Reynolds number R, as shown in Fig. 9.

FIG. 8: Outer flow axial velocity component of the fluid U0 for ε = 0.1, R = 500, and m = 0.316.
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FIG. 9: Outer flow axial velocity component of the fluid U0 for different values of the Reynolds
number at ε = 0.1, U = 0, and m = 0.316.

V. CONCLUSION

The effect of a normal oscillation of a wavy moving wall on the induced flow of a
two-dimensional viscous fluid is investigated on the basis of boundary layer theory in the
case where the thickness of the boundary layer is larger than the amplitude of the wavy
wall. The velocity components of the fluid of the outer and inner flow are obtained in
terms of a series expansion with respect to small amplitude by a regular perturbation
method. The inner and outer solutions are matched by the matching process. Graphs of
the velocity components, both for outer flow and inner flow for various values of R and U
are drawn. The main finding can be summarized as follows:

The steady streaming flow can be induced due to nonlinearity by the progressive wavy
motion of the wall and is proportional to ϵ2.
The fluid on a progressing wavy wall is transported in the direction of the wave propagation.
The axial steady flow velocity Uis/ε

2 approaches to 0.25 away from the wall, which coincides
with the results of Tanaka [4].
* The velocity components for the inner and outer flows are increased as the wall velocity
U increases.
* The study of this problem is very applicable on the basic mechanism of the swimming of
fishes and to mechanical engineering, where there is a possibility of the fluid transportation
without an external pressure.
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